Semantic and Generalized Entropy Loss Functions for Semi-Supervised Deep Learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning via Generalized Maximum Entropy

Various supervised inference methods can be analyzed as convex duals of the generalized maximum entropy (MaxEnt) framework. Generalized MaxEnt aims to find a distribution that maximizes an entropy function while respecting prior information represented as potential functions in miscellaneous forms of constraints and/or penalties. We extend this framework to semi-supervised learning by incorpora...

متن کامل

Unsupervised Total Variation Loss for Semi-supervised Deep Learning of Semantic Segmentation

We introduce a novel unsupervised loss function for learning semantic segmentation with deep convolutional neural nets (ConvNet) when densely labeled training images are not available. More specifically, the proposed loss function penalizes the L1-norm of the gradient of the label probability vector image , i.e. total variation, produced by the ConvNet. This can be seen as a regularization term...

متن کامل

Semi-supervised deep kernel learning

Deep learning techniques have led to massive improvements in recent years, but large amounts of labeled data are typically required to learn these complex models. We present a semi-supervised approach for training deep models that combines the feature learning capabilities of neural networks with the probabilistic modeling of Gaussian processes and demonstrate that unlabeled data can significan...

متن کامل

Adversarial Learning for Semi-Supervised Semantic Segmentation

We propose a method 1 for semi-supervised semantic segmentation using the adversarial network. While most existing discriminators are trained to classify input images as real or fake on the image level, we design a discriminator in a fully convolutional manner to differentiate the predicted probability maps from the ground truth segmentation distribution with the consideration of the spatial re...

متن کامل

Maximum Entropy Semi-Supervised Inverse Reinforcement Learning

A popular approach to apprenticeship learning (AL) is to formulate it as an inverse reinforcement learning (IRL) problem. The MaxEnt-IRL algorithm successfully integrates the maximum entropy principle into IRL and unlike its predecessors, it resolves the ambiguity arising from the fact that a possibly large number of policies could match the expert’s behavior. In this paper, we study an AL sett...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2020

ISSN: 1099-4300

DOI: 10.3390/e22030334